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Given a magnet with midplane symmetry, the field is totally deter-
mined if one knows the field in the midplane. A new finite difference
method for calculating the field from discrete data in the midplane
is described. Because data to be processed are obtained from mea-
surements with noise, the method for evaluating derivatives is re-
quired to suppress the high frequency signals effectively, while
maintaining reasonable accuracy for low frequencies. First-order
and second-order differentiators for a uniform mesh are designed.
As a test, they are applied to the magnetic field produced by two
magnetized iron bars whare the exact analytical expression for the
magnetic field is known and also they are applied to the same field
data when a small amount of noise is superimposed. And, finally,
they are applied to the measured magnetic field of the K1200 super-
conducting cyclotron. @ 1995 Academic Press, Inc.

1. INTRODUCTION

In doing orbit calculations for cyclotrons, it is sometimes
necessary to construct off-median plane field components when
only a discrete median plane map of the magnetic field is given
(in the case of cyclotrons, data are usually measured on a polar
mesh). Assuming median plane symimetry and using a fourth-
order vector potential, the components of the magnetic field
off the median plane [1] are given by
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where B,, B,, and B, are magnetic field components in cylindri-
cal polar coordinates and where

3
C(r, 6, 7) = zB(r, 0) — :—i—, VIB(r, 6)

* Work supported by the National Science Foundation under Grant No.
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angd
B(r, 8) = B(r, 6,z = 0).

Here, Vi is the two-dimensional Laplacian operator. Of course
this truncated series easily can be extended to any order desired.

Gordon and Taivassalo [1, 2] evaluated coefficients using
the second-order central difference schemes,

Ji=(fin —fi-)2A )
D= (i +fior — 2f)MA4% &)

where f; = f(x;) and A is the step size of the mesh. This scheme
presented difficulties both in accuracy and maximum order
of expansion due to the amplified noise produced by taking
derivatives. The differentiator V3 should be applied successively
to get higher order coefficients of the Taylor series. Differentia-
tion amplifies the high frequency signals considerably which
contain noise from various sources. If an effective suppression
of the high frequency signals is not achieved, successive differ-
entiation will soon destroy the significance of the data obtained
s0. The differentiator should also evaluate accurately the deriva-
tives of signals over a sufficiently wide range of low frequency.
This suggests that a compromise between these two conditions
should be achieved.

A finite difference scheme which is a special case of a com-
pact finite difference scheme is used to avoid the additional
complexity imposed by compact schemes. If one wants to en-
hance the accuracy, a plausible way would be to use compact
finite difference schemes. A lot of work has been done for
compact finite difference schemes [3-6], and work for non-
uniform mesh has also been done [7, 8]. Especially, Lele [6]
did recent work on compact finite difference schemes. Even
thongh the operators designed by Lele have a frequency re-
sponse reasonably close to that of an ideal differentiator over
[0, 7], they are not adequate for processing measured data
containing noise because sufficient suppression of the high
frequency signals is not provided. This is described in Section 6.

There are two possible ways to the compute derivatives of
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a magnetic field. One way to do so is to process a magnetic
field with a certain filter to remove the high frequency compo-
nents before taking any derivatives. If the undesirable high
frequency components are suppressed to a satisfactory extent,
comparatively simple and standard differentiators could be used
for computing the derivatives. The other way is to mix the
processes of computing derivatives and filtering. We decided
to take the latter approach because of the following reasons,
even though we know that we are taking a rather complex
approach. First of all, there are many orbit codes used in this
laboratory to calculate varicus linear orbit properties which do
not require any of the off-median plane magnetic field compo-
nents but the median plane field map itself and all the research-
ers in this laboratory prefer having the field data unaltered for
orbit computations to making use of any artificially processed
field data. Second, it is vital to preserve the consistency between
the resulis obtained by the orbit codes using only the unpro-
cessed median plane field map and those by the nonlinear orbit
codes utilizing both the median plane field map and the off-
median plane field components.

We will use a composite operator of more than two finite
difference operators using only three nodes. In this case, use
of separate algorithms to evaluate derivatives at the nodes near
boundaries can be avoided by imposing simpie conditions for
each 3-node operator. The following property is useful to get
the frequency response of the composite operator obtained.

Let us consider a composite operator of two linear operators
L = 2 (), and L, = 2 hy(m)g, with the corresponding
frequency responses /, and /. Then the frequency response
of the composite operator of these two is H,H,, which is inde-
pendent of the ordering of the application of the linear operators.
If you consider the properties of the Z transformation [9, 10].
it is straightforward to verify the previous statements. We are
going to use this for the design of the operators.

2. DESIGN OF THE FIRST- AND THE SECOND-ORDER
DIFFERENTIATOR IN ONE DIMENSION

The standard second-order central difference scheme for an
initial evaluation of derivatives, composed with a filter, is used
to improve the frequency response of the differentiators. The
use of such a filter is to provide a strong suppression of the
high frequency signals and, by adjusting a parameter Q of the
filter, to improve the low frequency response at the same time.

First of all, the filter F is introduced that transforms {f,} to
{ £}, suppressing the high frequency signals. For the first- and
second-order differentiators, the parameter ¢} is adjusted, re-
spectively, 1o produce a reasonable result:

f forn=0,...N+1

!
8 = (fist T 212 T fus )4
8 =fo. Bwr1 = Jfus

U

he= 8= £ (80m1 + g = 280
e = goo  hner = gue
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k= (o, + 2By + By )4

ko= ho, Kyt = Pys

3

fo= k= 3kee) + Kyuy — 2Kk,

ﬁ:) = ky, fm—l = K11

The frequency response H of the filter is

HP(w) = [cosz(wﬂ) + % sinz(a))] [cosz(mIZ)

( {6)
+ 3 smz(w)] .

The proposed first-order differentiator is a combination of
the central difference scheme (refer to Eq. (8)} and a filter.
With the choice of Q@ = 1.70, a reasonable low frequency
response was obtained for the first-order differentiator. More
detailed discussion about the choice @ = 1.70 is given at
the section for resolving efficiency. The operator D which
approximates first-order derivative {(dldx)fix,)} forn =1, ...,
N from a given set of data {f, = f(x,)} forn = 0, ., N+ 11s

fi forn=0,.,N+1

U.
dy = (fir: —f-1)2A forn=1,...N
)

§a = (dn+l + an + dﬂ—l)/4

51 = dl, Sy = dN

4

Bn = S — 1%(an + Sp—1 — 2S.'1)

£1= 51, BT Su

hn = (8n+1 -+ 2gn + gn—1)/4
h=g, h=gn

i
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FIG. 1. Shows (H"(w) — iw)iw for the second-order central difference

scheme (real line ““b’’), that for the fourth-order central difference scheme
(real line *‘e’"), and that for the proposed differcatiator (real line “*a’* with
@ = 1.70). The dot-dash line corresponds to Q@ = 1.65 and the dotted line to
¢ = L75.

d I

a f(xn) = hu - Z (hnH + hn—l - 2]1,,,)
d d

Ef(xl)=hls E;f(-xN)=hN.

A complete expression of the operator D' is applied for the
nodes with n = 5 to n = N — 4, but we can still get a good
evaluation of derivatives for the rest of nodes at the same time.
It is convenient to express an operator as a composition of
several 3-node linear operators with a simple treatment of the
nodes at the end. This saves us the trouble of using a separate
algorithm to evaluate the derivatives at each of the nodes with
n=1.,4andn=N—3, ., N+ 1.

The frequency response H® of the first-order differential
operator, DU, is

HYw) = i sin(w)cosX(w/2) + 4 sinf(w)]

. _ (7
X [cos(w/2) + 3 sin*(w)].

Note that this is purely imaginary, so it does not have any
phase shift. Additionally it has a frequency response reasonably
close to that of an ideal differentiator for low frequencies, and
suppresses the high frequency signals sufficiently. Fractional
differences of the frequency responses for several schemes are
depicted in Fig. 1. By composing the second-order central
difference scheme with the filter, the low frequency response
was improved considerably, compared with that of the second-
order central difference scheme alone (refer to Fig. 1).
Before making comparisons with any other schemes, let us

TABLE 1

Resolving Efficiency e,(g) of the First Derivative Schemes

Scheme e=01 =001 &=20.001l
Newly designed first differentiator 0.29 0.16 0.10
Second-order central difference scheme 0.25 0.08 0.02
Fourth-order cenitral difference scheme 0.44 0.23 0.13

define resolving efficiency of approximate first-order differenti-
ators, e|{e) = wy/m [6]. The value w, is the maximum wave-
number of a well-resolved wave satisfying the error tolerance
relation |H%w) — iw|/m = & for any given positive value of
&. The resolution characteristics of several schemes are tabu-
lated in Table I. In this paper, Q = 1.70 was chosen to maximize
the resolving efficiency for & = 1.0 X 107* (refer to Fig. 1).
If one wants to maximize the resolving efficiency for & =
5.2 X 107", the natural choice would be Q¢ = 1.75 (refer to
Fig. 1). According to Fig. 1 and Table I, the approximate first-
order differentiation scheme is better than the second-order
central difference scheme and worse than the fourth-order cen-
tral difference scheme for low frequency signals, On the other
hand, it is superior to them in suppressing the high frequency
signals (refer to Fig. 2).

The reason the second-order central difference scheme is
used as an initial operator is that it is the simplest one. If
one wants to use the more complicated fourth-order central
difference scheme as an initial operator, one should also use
more elaborate filters that have comparable resolving efficiency
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FIG.2. Shows the frequency response divided by i, F/"(w)/i, as a function
of the wavenumber @. Curve **a’" is for our proposed differentiator, curve
*‘b"" for the second order central difference scheme, curve “‘c’” for the fourth-
order central difference scheme, and curve **d" for the mathematical first-
order differentiator. **a’* is superior to *'b"’ and “‘c” in suppressing high
frequency signals and shows a frequency response reasonably close to that of
the mathematical differentiator for low frequency as well.
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(see Section 3). At present, these added complications do not
seem necessary for our purposes. Here the second-order and
the fourth-order central difference schemes for first-order deriv-
atives are defined as

f; = (,ﬁ+1
£ =5 Fres — F)2A = M iz — fIA, ©)

—fi-)/24 8

where f; = f(x;} and A is the step size of the mesh.

The proposed second-order differentiator is a combination
of the central difference scheme (refer to Eq. (11)) and a filter.
With the choice of 0 = 1.36, a reasonable low frequency
response was obtained for the second-order differentiator. More
detailed discussion about the choice ¢ = 1.36 is given in
the section for resolving the efficiency. The operator D™ that
approximates second-order derivatives {(d¥%dx?)f(x,}} for n =
1, .., N from a given set of data {f,} forn = 0, .., N + 1is
given below:

f forn=0,..,.N+1

U

dy={(fio +f —2f AT forn=1,.. N
l

§a = (dys1 + 2d, + d,-1)/4
si=dy, sy=dy

4

8= 5: —1%6-(&,“ + 85— 28,)
E1= 51, &= S

J

e = (8usr + 28, + gu1 )4
hi=g, hv=gy

U

d’ |

;ix_z f('xn) = hn - Z(hn“i-l + hn-l - 2hﬂ)
d? d?

;i_x_zf(xl)zhl, Ef(va)=h~.

The frequency response H® of the second-order differential
operator, D?, is

H%®) = —4 sin{w/2)[cos¥{w/2) + 122 sin’(w)]

(10
X [cosi(w/2) + § sin¥(w)].
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FIG. 3. Shows (H™w) + w?/—w® for the second-order central difference
scheme (real line “‘b’’), that for the fourth-order central difference scheme
(real line ‘‘c’"), and that for the proposed differentiator {real line **a’™" with
& = 1.36). The dot-dash line corresponds to @ = 1.30 and the dotted line to
¢ = 140,

Note that this is purely real, so it does not have any phase shift.
The fractional differences of frequency response for several
schemes are depicted in Fig. 3. By composing the standard
central difference scheme with the filter, the low frequency
response was improved considerably, compared with that of the
second-order central difference scheme alone (refer to Fig. 3).

In a similar way, let us define a resclving efficiency of
approximate second-order differentiators, e, = w,/m, where the
value wyis the maximum wave-number of a well-resolved wave
satisfying the tolerance relation |H® + w?|/w?® = & for any given
value of e. In this paper, § = 1.36 was chosen to maximize the
resolving efficiency for & = 1.0 X 107 {refer to Fig. 3). If one
wants to maximize the resolution characteristics for £ =
4.3 ¥ 107, the natural choice would be @ == 1.40 (refer to Fig.
3}). The resolving efficiency for several schemes are tabulated in
Table II. The approximate second-order differentiation scheme
is better than the second-order central difference scheme and
worse than the fourth-order central difference scheme for low
frequency signals (refer to Fig, 3 and Table 1[). On the other
hand, it is superior to them in suppressing high frequency

TABLE II

Resolving Efficiency e){e) of the Second Derivative Scheme

Scheme e=0! £=001 &=0001
Newly designed second differentiator 0.30 0.17 0.10
Second-order central difference scheme 0.35 0.b1 0.03
Fourth-order central difference scheme 0.59 0.31 0.17
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FIG. 4. Shows the frequency response H'(w) as a function of the wave-
pumber @. Curve '3’ is for our proposed second-order differentiator, curve
*‘b"* for the second-order ceniral difference scheme, curve *‘c’” for the fourth-
order central difference scheme, and curve **d’’ for the mathematical second-
order differentiator. “*a’ is superior to “*b”’ and ‘‘¢’’ in suppressing high
frequency signals and shows a low frequency response reasonably close to
that of the mathematical differentiator as well. Note that “‘b"” and “*¢’’ do not
suppress high frequency signals, and the effect shows up when they are applied
1o data containing noise.

e

signals (refer to Fig. 4). Here the second-order and the fourth-
order central difference schemes are defined as

Fi = er + fror — 2014 (11
£ =500+ fo— 208 =3 faa + i — 20/48, (12)

where f; = f(x;) and A is the step size of the mesh.

The reason why Gordon and Taivassalo {1, 2] used Eq. (5)
instead of Eq. (11) or Eq. (12) is that the frequency response
of Eq. (5) at @ = 7 is equal to 0 while those of Eq. (11) or
Eq. (12) are not equal to 0 (refer to Fig. 4). Due to this, neither
Eqg. (11} nor Eq. (12) properly suppresses the high frequency
signals, which makes it difficult to apply these schemes succes-
sively to get higher order derivatives of data with noise. Loss
of the significance of data due to amplified noise is made clear
by comparing Fig. 9, where a scheme, Eq. (11), that poorly
suppresses high frequency signals is used and Fig. 10, where
the proposed scheme with the noise filter is used.

3. DESIGN OF THE FIRST- AND THE SECOND-ORDER
DIFFERENTIAL OPERATORS IN TWO-DPIMENSIONAL
CARTESIAN COORDINATES

For the partial differentiators in two dimensions, the second-
order central difference schemes (Eq. (8) or Eq. (11)) with a
filter in x and a filter in y are used. For the sake of convenience,
the x filter will be called a ‘“‘longitudinal filter'” and the y filter

will be called a ‘‘vertical filter’” when a partial derivative with
respect to x is taken. Differential operators in two dimensions
are a simple generalization of the corresponding one-dimen-
sional analogues with one difference. The difference is the
addition of a **vertical filter’” such that when partial differentia-
tion with respect to x {y) is performed, suppression of the high
frequency signals with respect to y (x) should be performed at
the same time such that the low frequency signals pass through
and a strong suppression of the high frequency signals is pro-
vided. This ensures the suppression of noise signals when the
partial differential operators are applied successively to get the
higher order derivatives. The importance of this filter is very
well demonstrated in Table VI and Figs. 10 and 11.

The filter F, that transforms {f, .} to { fom} suppressing the
high frequency signals with respect to y with a choice of @ =
1.01 is given below:

Jom fOorm=0,..N+1lim=0 ., M+1
U

8un = (fum=1 + 2fom + o1 Y4

8no =Jaos  Bumnt = Jomni
l

hﬂ‘m = Enm T %(gn.m—l + Bam+1 — 2gn.m)

Pttt = B+

hn.ﬂ = grl.(]s

U
kn,m = (hn.m—} + 2hﬂ‘m + hn.m+l)/4

kno = Peps  Kuptrt = Bosrny
U
ﬁl,m = kn.m - i(kn.m*l + kn,m+] - 2kﬂ.m)

J";,o = ko, ﬁ:,M-H = Koprt1
The frequency response H'" of the filter, F,, with @ = 1.01 is

HPw,, w,) = [cos’(w,/2) + 5 sin’(w,)]

: (13)
X [cosHew,/2) + §sin*(w,)],

and Fig. 5 shows the plot of this frequency response.

Let us define a resolving efficiency of the filter, e, = w//m,
where the value wy is the maximom wave-number of a well-
resolved wave satisfying the tolerance relation |[H® — 1| < &;
er{e = 0.1) = 0.32, ex(e = 0.01) = 0.17, and ex{e = 0.001)
= 0.10.

A first-order partia! differentiator with respect to x is consid-
ered. A combination of the standard central difference scheme
(refer to Eq. (8)} and an x filter (with ¢ = 1.70) and a y filter
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FIG. 5. Shows the frequency response, H")(e)}, of the filter used for the
proposed partial differentiators as a function of wavenumber, «. Good low-
frequency response and suppression of high-frequency signals are shown.

(with @ = 1.01) are used. In this case, the x filter will be called
the ““longitudinal filter’” and the y filter the *‘vertical filter.”
The differential operator £ that approximates the first-order
partial derivatives with respect to x, {(3/9x)f(x., y,.)} for n =
l,...,Nandm = 0, ..., M + 1 from the data {f,. = f(x,, ¥.)}
forn=0, . . N+landm=0,... M+ 1lis

fom forn=0,  N+1m=0,..M+1

4
dn,m = (f;ﬁl.m _'f'rl,m)lzax
forr=1,.Nm=0,..M+1

U
an,m = (dnwfl‘m + 2dnm + dn*l.m)/4

SXym — d'..m-, SXhim = dN.m

1.7
EXam = $Xawm — T(an+l,m + SXp—1m — stn,m)
g—xl,m = 8$X1 ;s ng,m = SXnm

hxn.m = (gxn+1,m + 2gxn,rl! + gxn—l,m)/‘d'

AXi = 8X1my  HXym = EXnm

l

k-xrl,m = hxﬂ,m - %(hxn+l,m + hxn—l.m - 2hxn,m)

kxl‘m = hxl,m, kxN,m = th‘m

)

Syn.m = (kxn.mH + 2kxn.m + kxn‘m—l)/4

5Yn0 = KXogs  SVamrel = KXype)

U
EVom = SYom = S Vamet + SVamet — 28¥unm)
EVio = SYnos  E¥nms1 = S¥ami

U

hyn,m = (gyn.mﬂ + zgyn_ni + gyn‘,,._|)i4
NYon = B¥nos  M¥upel = E¥natr+)
U

d

o5 T O ) = By~ i mer T Wy — 280 0)
S 30 = B¥or - FCuypan) = B

a-x n yO yn‘Os ax n-:yM+] yn.M+I’

where A, is the step size of the x-mesh.

Evaluvation of derivatives at the nodes near boundaries is
handled properly and with simplicity without introducing addi-
tonal algorithms to handle them. In a similar way, the approxi-
mate first-order partial differentiator D{V with respect to y can
be obtained. The corresponding frequency response of D" is

HMw,, w,) = i sin(w,)[cos*(w,/2) + 5 sin*(w,)]
X [cosH(w,/2) + 1 sin¥(w,)]
Lo (14)
X fcos¥(w,/2) + 2 sin*(w,)]

X [cosH(w,/2) + 1 sin*(w,)],

and Fig. 6 shows the plot of the frequency response in the

Ay oy
s

ity
G

I
4
Jf”ll”’/#

FIG. 6. Shows the frequency response of the first-order partial differentia-
tor with respect to x divided by i, HP(w,, o)fi for 0 < w, = mand 0 =<
w, = 7. Suppression of the high frequency signais both in x and y should
be noted. It also shows good linear behavior for low {requency.
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frequency domain. It should be noted that because this is purely
imaginary there is not any phase shift.

A second-order partial differentiator with respect to x is
considered. The standard central difference scheme (refer to
Eq. (11)) composed with an x filter (with ¢ = 1.36) and a y
filter (with Q = 1.01} is used. In this case, the x filter is called
the *‘longitudinal filter’” and the y filter is called the *‘vertical
filter.”” The differential operator D@ that approximates the sec-
ond-order partial differentiation {(#%3x2) f{x,, v.)} with respect
toxforn=1, ., Nand m =0, ..., M + 1| from the data
{fim =flxp,ypforn=0,. . N+ landm=0,..., M+ lis

Sam
)
Gom = (frvrm T ho-im = 2 )/?
forn=1,..,.Nnm=0,., M+

forn=0,, . . N+1im=0,..M+1

an,m = (dn+l.m + 2'dn.m + dnﬁl.m)/4
X = iy S = Ay

= _ 136 + -2
g-xn,m - sxn.m 4 (an+l.m an-—l,m an.m)
g—xl.m = SX;',,,,, ng,fﬂ = Sxx’\’.m

hxn.m = (g-an,M + 2gxn.m + gxn*l.m)’%‘

IXym = Xims PXom = §Xnim
§
K¥um = My = $Husim + Bpe e — 2hx, )
kx)m= BXy s  KXym = RXym
U
Vum = (kX + 2kX, + kX pmoi)/4
8¥ng = KXo SVaprsr = KXopeit
U
Eam = Sam = T Vamsr T Vamot = 2570}
BYnp = S¥no:  BVamtt = S¥npt1
U

hyn‘m = (gyn,mﬂ + zgy.u.m + gyn.m—l)/4

AYup = &Yn0>  H¥umt1 = 8¥us+i

U

2

d
3t S V) = By — iUy - Byt = 2hyun)

FIG.7. Shows the frequency response of the second-order partial differen-
tiator with respect to x multiplied by —1, H¥e,, w,) for 0 = @, = 7 and
0 = @, < 7. Suppression of the high frequency signals both in x and y should
be noted. It shows good quadratic behavior for low frequency signals as well.

a? 9?
Ec—zf(xnv ))0,) zhyn,ﬂa é;_zf(xnsnyt) =hyn4M+h

where A, is the step size of the x-mesh.

The approximate second-order partial differentation DI with
respect to y can be obtained in a similar way. The corresponding
frequency response of D is

Hw,, 0,) = —4 sin¥w,/2){cos (w,/2) + 1 sin¥(w,)]

X [cosHw,/2) + 1 sin’{(w,)]

(15)
X {cosi(w,/2) + 3 sin(w,)|

X [cos(w,/2) + 1 sin(w,)]

and Fig. 7 shows the plot of the frequency response in the
frequency domain.

4. DESIGN OF THE OPERATOR FOR THE TWO-
DIMENSIONAL LAPLACIAN OPERATOR IN POLAR
COORDINATE SYSTEM

Special caution should be taken when we deal with the Lapla-
cian operator in polar coordinates because the operator is

52+a a*

V2:4 —_ [
Poart rar rogt

(16)

which is a multiplication of a partially differentiated function
and 1/r or 1/r%

In this case, the three terms should be processed separately
and then added together to compute V3 f. The term (8%ar2)f(r,,
6,) on a polar mesh is straightforward to compute because it
is not multiplied by an additional function of r or 8. For the
rest of the terms, (8/87)f(r,, 6,) and (3438 f(r,, 8,) should
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FIG. 8. Shows a cross-sectional view of the georetry of the iron bars in
the plane y = 0, and the field valves B, (x, y = 0, z = () in kG, Note how
fast the field values decrease as a function of x. The maximum field value is
12.6 kG.

be computed first and then multiplied by the corresponding
i/r, and 1/r:, respectively. After completing the processing of
the three individual terms, they should be summed to get the
result of V3£, In any other coordinate system, the same rule
is applied.

5, APPLICATION TQ THE FIELD PRODUCED BY
MAGNETIZED IRON BARS

Two long iron bars were considered with the geometry —2
=x=12 -2=y=272 and z= 1 for one iron bar and —2 =
x=72 -2=y=2 and z = —1 for the other (refer to Fig.
8). These bars are uniformly magnetized in the +z direction
with a resultant internal field B,. Let us define x; = —2, x, =
2, v, = —2, and y, = 2. The magnetic field due to the two
sheets of surface charge [1, 11] is given by

B, . XY,
Bix,y Z):EZ(_UW [arctan( / )
Lt

ZiR,
+ arc tan 2
arc ran 7R ’

where i, j =1, 2, B, is taken to be 21.4 kG [1],

(17)

Xi=x—x,

Yi=y—y
Z,=1+zg,
Z =1-7z,

R. = (X} + Y1+ Z3)".

The geometry of the iron bars in the plane y = 0, and the field
values of B,(x, y = 0, z = 0) in kG along the x-axis are shown
in Fig. 8.

B, is Taylor-expanded around z = O just as in Eq. (1). For
the sake of convenience, let us define as in Section 2:

B(x,y) = B(x, y, z = O} (18)

The program ‘‘Mathematica’ was used to obtain the analytical
expressions of various derivatives such as ViB, ..., ViB with
Vi= g%ox? + ooy’

We made comparisons between the results obtained from
the analytically differentiated formulas using the program
““Mathematica’” and the results from the two different approxi-
mate second-order differential operators; cne is (f,.: + fi2 —
2f.)14 A used by Gordon and Taivassalo [1, 2] and the proposed
differentiators described in Section 3. For the sake of conve-
nience, let us call the former *‘operator 1°” and the latter *‘opera-
tor 2.

The numerical calculations start with values of B(x, y) stored
in a uniform square mesh with Ax = Ay = 0.05. Data from
—4 =x=4and —4 = y = 4 were chosen for comparison
because this is the region where drastic changes occur. Exact
evaluation of the derivatives of various orders was done by
analytically differentiating Eq. (17) evaluated on the median
plane, where z = Qusing the program ‘*Mathematica.”” Numeri-
cal evaluation of the derivatives of various orders was done by
applying the approximate differentiators to the field data of B.
In obtaining the numerical evaluation of the derivatives, the
field data expressed in &G up to the 11th decimal place obtained
from Eq. (18) were used to keep the truncation error as small
as possible.

In each case, we calculated the values of a particular term
in the expansion of B, for z = 0.5, which is halfway from the
median plane to the poleface. The rms difference in &G between
the values obtained from the two different approximation meth-
ods and the exact values from the analytically differentiated
expressions are given at Table III, where rms(D) is the rms

TABLE 11
Operator 1 Operator 2
Term for comparison rms{D) rms(D)
ViB x 0.5%2! 1.36 X 107? 1.86 x 1073
ViB > 0.5%4¢ 102 % 19! 313 x 1978
VB X (.596! 0.481 X 107 3.07 x 1078
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TABLE IV
Operator | Operator 2
Term for comparison rms{D) rms{D)
ViB x (.52 534 x 107 3.60 X 107*
Vig x 0.5%4! 3.79 % 1073 598 x 10~
ViR X 0.5%6! 1.59 x 107 4.54 x 1078

difference between the numerical and analytical results. The
largest magnitudes of the second-order, the fourth-order, and
the sixth-order terms of expansion are 0.948 kG, 0.140 kG, and
0.0252 kG, respectively. ViB X 0.542! is the second-order
term in z evaluated at z = 0.5 when B.(x, y, z). Eq. (17), is
Taylor-expanded with respect to z around the z = 0 plane,
obtained by applying the second-order differentiator Vi to the
given data from B; V4B X 0.5%4! is the fourth-order term in
z evaluated at z = 0.5, obtained by applying the second-order
differential operator V3 twice to the given data; and V4B X
0.5%6! is the sixth-order term in z evaluated at z = 0.5, obtained
by applying V3 three times to the given data.

Similar calculations were done with Ay = (.1 and Ay =
0.1. The values of the rms differences in kG are tabulated at
Table IV. The largest magnitudes of the second-order, the
fourth-order, and the sixth-order terms of expansion are 0.948
kG, 0.140 kG, and 0.0252 kG, respectively. By comparing Table
IV and Table III, we can see the effect of step size, or in other
words, the effect of the sampling rate. In both cases, “‘operator
2’7 outperforms ‘‘operator 1.”’

6. APPLICATION TO DATA WITH NOISE

We assumed that noise in the data could be simulated by
generating random numbers and adding them to the values of
B stored in the square mesh described above, Comparison was
then made between the resulis obtained from *‘operator 2°* and
““operator 1°” to determine their characteristics when applied
to data with noise. In order to compare the results with those
in Table IV above, we used the same mesh spacing, Ax =
Ay = 0.1. The random numbers added to the stored field data
are within +1.00 X 107* kG, which is arcund the limit of
measurement accuracy. The rms difference between the field

TABLE V
Operator | Operator 2
Term for comparison rms(D) rms(D)
ViB X 0.5%2 540 x 1073 0.682 x 1073
Vi x (.5%4! 448 x 107 [.74 X 1073
ViB X 0.596! 3.60 x 107% 208 X 107

—fa
o

FIG. 9. Shows the fourth-order term, V3B x 0.5%4!, obtained by applying
the second-order central difference scheme, Eq. {11), to the stored median
plane data with random noise within +1.00 X 107 kG, as described in Section
6. The data are stered in a square mesh with —4 = x = 4, Ax = (.1, and
—4 =y =4, Ay = 0.1. The maximum value from this calculation and that
from the analytical formula are 0.2311 kG and 0.1399 kG, respectively, and
the corresponding minima are —{1.1758 kG and —0.0865 &G, respectively. It
is clear that without proper suppression of high frequency signals, it is difficult
to get significant data. Compare with Fig. 10.

data, with and withour this noise is 5.75 % 107° k& (which
agrees quite well with the expected values, (10/ \/5) X 107 kG).

It should be noted that the magnitude of random noise is
very small compared with the maximum field value of 12.6 kG
(see Fig. 8) for the field described in Section 3, and vyet its
effect on the derivatives is not negligible at all. Table V shows
the values of the rms differences between the two approximate
differentiators and the analytically differentiated formulas.
With noise, *‘operator 2'” is superior to “‘operator 1.7 Approxi-
mate second-order differentiators such as Eq. (11) and Eq. (12)
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FIG. 10. Shows the results obtained from the same calculation as those
depicted in Fig. 9, but with the use of the improved secend-order differentiator
and the *“vertical filter’” described in Section 3. The high frequency components
observed are due to the random noise within £1.00 X 10™* kG added 10 the
analytical field data to see the effects of noise. The maximum value from this
calculation and that from the analytical formula are 0.1401 kG and 0.1399 kG,
respectively, and the corresponding ntinima are —0,0895 &G and —0.0865 &G,
respectively. Comparison with Fig. 9 makes clear the importance of suppressing
high frequency signals.
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TABLE VI

With vertical filter Without vertical filter

Term for comparison rms{D) ms{D)
ViB X 0.5%2! 0.682 x 107% .962 % 107}
Vi X 0.5%4! 1.74 x 1073 3.33 x 107
V§B = ,5%6! 208 x 1070 353 % 1073

are inferior to “‘operator 1”7’ when dealing with data with noise
since the frequency response near @ = T is non-zero {see
Fig. 4). The relative effectiveness of various differentiators in
suppressing high frequency signals is very well shown in Figs.
9 and 10. The effect of adding noise can also be observed by
comparing Tables V and 1V which differ only in the addition
of noise for Table V. The largest magnitudes of the second-
order, fourth-order, and sixth-order terms are 0948 kG,
0.140 kG, and 0.0252 kG, respectively.

As shown in Section 3, our approximate partial differentiators
are accompanied by the “*vertical filter’” which filters data in
the y (x) direction when partial derivatives are taken with respect
to x (y). If the data contain no noise at all and are perfectly
analytical, the **vertical filter’”” makes little difference. But it
becomes indispensable when data with noise must be dealt
with. Table VI shows the rms difference in £ between results
obtained from “‘operator 2,”” with and without the *‘vertical
filter.”* For the sake of convenience, let us call the former
““with vertical filter’” and the latter *‘without vertical filter.”’
As can be seen from Table VI, the *‘vertical filter’’ becomes
progressively more important with each succeeding term. Thus
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FIG. 11. Shows the same resulis as those depicted in Fig. 10, but here
they were obtained without the use of the **vertical filter.”” The high frequency
components observed are dug to the random naise within =1.00 X 107 k&
added to the analytical field data to see the effects of noise. The maximum
value from this calculation and that from the analytical formula are 0.1415 k&G
and 0.1399 kG, respectively, and the corresponding minima are —0.0928 kG
and —0Q.08635 kG, respectively. It is clear that without the “*vertical filter,”
suppression of high frequency signals is not sufficient. The *‘vertical filter”
is indispensable to evaluate higher order derivatives.

FIG. 12. Shows two maps of the fourth-order term in Eq. (1) evaluated
at z = 0.5 {in), ViB % 0.5%4! for a magnetic field with g/A = 0.25 and a
nominal final energy £, = 40 MeV/u of the K1200 supercenducting cyclotron
with 32 (in) < r = 40 (in) and 0° < ¢ = 119° with the maximum field of
454 kG. The map at the top is obtained by vsing the differentiators in Eqs.
{4), (5) and the map at the bottom by utilizing the proposed differentiators.
The two maps are plotted to the same scale. The maximum and minimum
values of the map at the top are (67.2 G, —82.0 G), respectively, while
those of the map at the bottom are (82.3 G, —i03.8 &), respectively.
Clearly the magnitudes of the extremum values evaluated by the proposed
differentiators are larger than those obtained by utilizing Eqs. (4), (5). This
is an indication of thc improved low-frequency characteristics, At the same
time, the map at the bottom has a smoother surface compared with the
map at the top, which is a result of effective high frequency filtering of
the proposed differentiators.

the ““vertical filter’” is indispensable for evaluating higher order
derivatives of data with noise. Figures 10 and Fig. 11 show
the fourth-order terms, one evaluated by the proposed second-
order differentiators with the ‘‘vertical filter’” in Section 3 and
the other by the same differentiator without the *“vertical filter.”
The contrast between the two becomes sharper for higher order
derivatives. The largest magnitudes of the second-order, fourth-
order, and sixth-order terms of expansion are 0.948 kG, 0.140
kG, and 0.0252 kG, respectively.

7. APPLICATION TO THE MAGNETIC FIELD OF THE
K1200 SUPERCONDUCTING CYCLOTRON

The K 1200 superconducting cyclotron at National Supercon-
ducting Cyclotron Laboratory was designed to accelerate vari-
ous heavy ions. The median plane field map is measured on
the polar mesh with A8 = 1° and Ar = 0.1 (in) while the radius
of the machine is 42 (in). From the Fourier analysis, we can
safely assume that the cutoff frequency w.ur = 1.05 which
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FIG. 13. Shows two maps of orbits close to the separatrix for v, = 0.740
which is near the v, = § resonance at £ = 35.6 MeV/u for a field with GiA =
0.25 and a nominal final energy E; = 40 MeV/u of the K1200 superconducting
cyclotron. J, and ¢, are the action and angle variable. The orbits are computed
for 400 turns with two different versions of the Z* orbit code. One is using
the differentiators in Egs. (4), (5} and the other is utilizing the proposed
differentiators. Due to the chaotic Jayer on the separatrix, any kind of errors
in computations can be visualized with ease, The map of the orbit computed
by the Z* orbit code using the differentiators in Eqgs. (4), {3) spirals inward
(see the top figure) and is asymmetric, while that obtained by the Z* orbit code
exhibits more physical behavior {see the bottom figure). This serves as indirect
evidence for the reliability of the proposed differentiators as a 100l for evaluating
the off-median plane field components of cyclotrons.

corresponds to the 60th harmonic in our case, At the cutoff
frequency, the fractional error of the proposed first-order differ-
entiator is 16.9% and that of the proposed second-order differen-
tiator 14.8%.

We now apply the proposed differentiators to evaluate the
coefficients of the Taylor series in Eq. (1) for the median plane
magnetic field data of the K1200 cyclotron. The magnetic field
used as an example is for particles with g/4 = 0.25 and a
nominal final energy £; = 40 MeV/u. As an illustration, two
maps of the fourth-order term evaluated at z = 0.5 (in),

3B X 0.5*41, are presented. The map at the top in Fig. 12 is
obtained by using the differentiators in Eqgs. (4), (5), used by

Gordon and Taivassalo, and the map at the bottom in Fig.
12 by utilizing the proposed differentiators. First of all, the
magnitudes of the maximum and the minimum are larger when
the proposed differentiators are used, which is an indication of
the improved low frequency characteristics. Second the surface
of the map obtained by using the proposed differentiators is
smoother, which proves the effective filtering of the high fre-
quency components by the proposed differentiators. From the
comparison, it can be deduced that the proposed differentiators
do have the characteristics necessary in computing the off-
median plane field components of cyclotrons.

As an indirect test, the results of orbit computation conducted
near the v, = 3 resonance are presented [12]. An orbit quite
near the separatrix was chosen where, due to the existence of
chaotic layer, any kind of errors in the computation can easily
be amplified. Figure 13 shows clearly the ditference. The map
of the orbit computed by the Z* orbit code using the differentia-
tors in Eq. (4, 5) spirals inward and is asymmetric while that
obtained by the Z* orbit code, making use of the proposed
differentiators, exhibits more physical behavior. Besides this
orbit, we ran several different orbits, even though they are not
presented here. It turned out that the differentiators poorly
suppressing high frequency components amplify the chaotic
behavior of orbits near the chaotic region.

8. CONCLUSION

The low frequency characteristics of the approximate differ-
entiators described in this paper are comparable to those of
fourth-order central difference schemes. In particular, the re-
solving efficiency of our approximate differentiators is good
enough to process data with maximum wave-number less than
about 0.5.

In addition, our approximate differentiators sufficiently sup-
press high frequency signals. We have also found that the
“vertical filter”” suppressing high frequency signals in y (x)
direction when taking partial derivatives with respect to x (y)
plays an important role in obtaining higher order derivatives
by successive application of the approximate differentiators.
Our approximate differentiators are superior to the second-
order central difference scheme and the fourth-order central
difference scheme in dealing with data with noise.

The proposed differentiators might not be suitable for general
purposes but they proved to be effective in computing the off-
median plane field components using only the measured median
plane field map of cyclotrons.
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